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Quantum chaos of an ion trapped in a linear ion trap
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We describe the transition to quantum chaos of an ion trapped in a linear ion trap and interacting
with two laser fields. Under the conditions of adiabatic illumination of the upper level of the ion, and
when the frequencies of the two laser beams are slightly different, the system is reduced to a
quantum linear oscillator interacting with a monochromatic wave. The property of localization over
the quantum resonance cells is proposed to exploit in order to facilitate the process of measurement
of the probability distribution of an ion on the vibrational levels. In the regime of strong chaos the
time-averaged values of the energy and dispersion of energy are computed and compared with the
corresponding classical quantities for different values of the perturbation amplitude. In the exact
resonance case, the classical analog of the system possesses an infinite inhomogeneous stochastic
web. We analyze the quantum dynamics inside the inhomogeneous web. It is shown that the
quantum system mimics on average the dynamics of the corresponding classical system. Formation
of the quantum resonance cells is illustrated in the case of a finite detuning from the exact resonance,
and under increasing of the wave amplitude. The parameters of the model and the initial conditions
are close to the real physical situation which can be realized in the system of cold trapped ion
perturbed by two lasers fields with close frequencies. ©2000 American Institute of Physics.
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The transition to quantum chaos is considered in the sys-
tem of cooled trapped ion perturbed by a monochromatic
field of two lasers with close frequencies. This system i
important for studying conditions of stable operation in
future quantum computer devices. In some region of pa-
rameters, the system is reduced to the quantum harmonic
oscillator interacting with a monochromatic wave. In the
case of the exact resonance, the classical phase space p
sesses an infinite inhomogeneous stochastic web whic
separates the classical resonance cells. Inside each cell t
classical particles move along regular closed trajectories
When the wave amplitude increases the width of the web
also increases. It is shown that chaotization of the phase
space leads to increasing the probability of the quantum
particle to move from one quantum cell to another. In the
regime of strong classical chaos, the time-averaged quan
tities of the energy and the dispersion of energy behave
similarly in both classical and quantum systems. The for-
mation of the quantum resonance cells is demonstrated a
finite detuning from the exact resonance and under in-
creasing of the wave amplitude. The results derived in
this article can be used for understanding the regions of
stability and quantum chaos of an ion in linear ion trap
devices.

I. INTRODUCTION

Recently, devices based on trapped ions have been
to investigate experimentally fundamental aspects of qu
3711054-1500/2000/10(2)/371/12/$17.00
-
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tum mechanics,1,2 for important technological application
such as optical frequency standards3 and for quantum
computing.4,5 An ion trapped in an ion trap is considered
a candidate for realizing quantum logic operations by app
ing a laser radiation to the internal degrees of freedom of
ion.5 When the radiation field is rapidly and periodical
switched, this system can be described as a kicked harm
oscillator.6,7 In Ref. 8, a model was proposed in which th
trapped ion, perturbed by the field of two laser beams w
close frequencies, reduces to the model of a harmonic o
lator interacting with a monochromatic wave. In this artic
we analyze in detail a transition to quantum chaos in
model.8 The results obtained for the quantum model a
compared with the classical dynamics.

As was shown in Ref. 9 the quantum Hilbert space o
harmonic oscillator interacting with a monochromatic wa
is divided into the quantum resonance cells. The dynam
manifestation of such a division is the property of localiz
tion over the quantum resonance cells. In this case, the p
ability distribution exponentially drops mainly at the boun
aries of the cells—quantum web-tori—being on average
same inside the cells. In this article, we show that with
creasing of the wave amplitude, the quantum web-tori
come more ‘‘penetrating.’’ This behavior corresponds to
creasing of the probability for a quantum particle to trav
between the cells due to the increase of the chaotic com
nent in the classical phase space.

The main difference between the classical and quan
systems which possess an infinite homogeneous chaotic
© 2000 American Institute of Physics
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in the phase space is the phenomenon of dynamical loca
tion. Due to this phenomenon, the quantum systems mim
the dynamics of the corresponding classical analog only d
ing a finite time, after which the quantum interference effe
cease the quantum diffusion, while the classical diffusion
not changed. The dynamical localization was observed in
kicked rotor10 and, under definite conditions, in the kicke
oscillator.11 The system considered in this article also po
sesses an infinite stochastic web, but, unlike the above m
tioned models, in our case the web is inhomogeneous—
web’s width decreases with increasing the coordinate or
mentum. The results of this article show that for large tim
and in the regime of strong classical chaos no signific
difference was observed in the classical and chaotic ave
dynamics.

The investigated classical system has an infinite stoc
tic web only in the case of the exact resonance. In any
situation there always is a finite detuning from the ex
resonance. The size of the web and the number of the r
nant cells in this case depend on the relation between
values of the wave amplitude and the detuning from ex
resonance. It is shown that the formation of quantum re
nance cells, with increasing the wave amplitude, changes
localization properties of the quantum system. When
wave amplitude is small, we observe localization over
individual levels, which corresponds to absence of the re
nant cells in the phase space. In the case when the w
amplitude is large enough, we observe formation of the p
teaus in the probability distribution which is specific for th
degenerate system. The transition from one type of local
tion to another is shown to correspond to a formation of
classical resonant cells in the phase space.

Below, in this article, we used a set of parameters a
initial conditions which allow an experimental verification
obtained results by using the type of ion trap apparatus
rently being used to investigate quantum computation.

The article is organized as follows. In Sec. II the tran
tion to chaos in the classical harmonic oscillator interact
with a monochromatic wave is described. In Sec. III w
study how a transition to chaos is manifested in localizat
properties of the quantum system in the case of exact r
nance. Time-averaged values of the energy and the dis
sion of energy are compared with the corresponding class
quantities at different values of the wave amplitude and
dimensionless Planck constant. Formation of the quan
resonance cells with increasing the wave amplitude is d
onstrated in Sec. IV in the near resonance case. In conclu
we outline the results.

II. CLASSICAL DYNAMICS

The classical dynamics of the harmonic oscillator int
acting with a monochromatic wave is described by
Hamiltonian,

H5
p2

2M
1

Mv2

2
x21

e

k
cos~kx2Vt !5H01V~x,t !, ~1!

whereM is the mass of the particle,p is the momentum,k is
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the wave vector,e/k is the amplitude of the wave,H0 is the
Hamiltonian of the unperturbed harmonic oscillator. In E
~1! the same notations as in Ref. 8 are used.

The system, described by Eq.~1!, possesses very inter
esting properties.12 When the resonant condition is satisfie
lv5V, l 51,2,. . . , an infinitely small perturbation gener
ates in the classical phase space, an infinite number of r
nance cells. The particles move along closed trajectories
side the cells. The resonance cells are separated from
other by the separatrix net. This net is covered by stocha
layers which form the infinite stochastic web. Under the co
dition of weak chaos,e!1, the web width is negligibly smal
and almost all classical trajectories are enclosed inside
cells as illustrated in Fig. 1~casel 54). The phase space i
shown in the Fig. 1 in the variables (X, P), whereX5kx
andP5kp/Mv are, respectively, the dimensionless coor
nate and momentum. The phase space has an axial symm
of the order 2l . ~In Fig. 1 the separatrix net is indicated b
the dashed curves.! A classical ion trapped in a resonant ce
remains localized in this cell forever.

It is more convenient to work with ‘‘action-angle’’ vari
ables which can be introduced in the following way. W
perform a transformation from the variables (p,x) to the
canonically conjugated variables (Pw ,w),

x5~2Pw /Mv!(1/2) sinw5r ~Pw!sinw, ~2!

p5~2PwMv!(1/2) cosw5Mvr ~Pw!cosw, ~3!

wherer (Pw)5(2Pw /Mv)1/2 is the amplitude of oscillations
In these new variables, the Hamiltonian~1! is,

H5Pwv1PbV1
e

k
cos~kr sinw2b!, ~4!

whereb5Vt. Here the variables (Pb ,b) are also canoni-
cally conjugate. The nonlinear perturbation in Eq.~4! can be
expanded in the series,

e

k
cos~kr sinw2b!5

e

k (
n52`

`

Jn~kr !cos~nw2b!. ~5!

FIG. 1. The classical phase space for the harmonic oscillator in the m
chromatic wave field, under the condition of exact resonance:l 54, e50.05.
The separatrix net is indicated by the dashed curves.



le

ul
io

he

e,

-
on
e

at
r
in
n

nt

a
in

ith

373Chaos, Vol. 10, No. 2, 2000 Quantum chaos
Under the resonance condition,l ẇ5ḃ or lv5V, all terms
in the sum in the right-hand side of Eq.~5! quickly oscillate
and can be averaged out, except for one term withn5 l . In
this approximation, the Hamiltonian~4! reduces to,

H5 P̄wv1 P̄bV1
e

k
Jl~kr !cos~ lw2b!. ~6!

It is convenient to introduce the new resonance variab
(I , u), (P̃b , b̃), by using the generating function,

F5I ~ lw2b!1 P̃bb.

The new Hamiltonian,

H5I ~ lv2V!1 P̃bv1
e

k
Jl~kr !cosu, ~7!

is independent of the variableb̃. Hence, P̃b5const. The
Hamiltonian,

H̃5H2 P̃bv5Idv1
e

k
Jl~kr !cosu, ~8!

whered5 l 2V/v, is called the ‘‘resonance Hamiltonian.’’12

It is independent of time, unlike the initial Hamiltonian~1!,
and mainly determines the motion along the closed reg
trajectories inside the resonance cells in Fig. 1. The stat
ary points for the dynamics generated by the Hamiltonian~8!
are defined by the equations,

u̇5]H̃/]I 50, İ 52]H̃/]u50,

or

e

k
~]Jl@kr~ I !#/]I !cosu1dv50, Jl@kr~ I !#sinu50.

Positions of the elliptic stationary points are given by t
expressions,

e

k

]Jl@kr~ I !#

]I U
I 5I l

57dv, ue50,p, ~9!

where the sign ‘‘2’’ corresponds to the value of the angl
ue50, and the sign ‘‘1’’ corresponds toue5p. For the
positions of the hyperbolic stationary points we have,

Jl@kr~ I h!#50, uh56
p

2
. ~10!

As one can see from Eq.~9!, in the case of the exact reso
nance the number of the stable points is infinite. As a c
sequence, there is an infinite number of the resonance c
The hyperbolic stable points are connected by the separ
net, which spans the whole phase space. At the cente
each of the cells in this net there is an elliptic stable po
~9!, and the particle moves around the elliptic points alo
closed trajectories as shown in Fig. 1.

For a sufficiently largee, chaos destroys the resona
cells as shown in Figs. 2~a!, 2~b! in the variables (X, P), and
Figs. 3~b!, 3~c! in the variables@kr(I ),u# for the casel 51.
However, influence of chaos on the cells is not equal for
cells: the cells with small values ofkr are more destroyed
than the cells with large values ofkr.
s,
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III. QUANTUM DYNAMICS FOR THE EXACT
RESONANCE CASE

Let us consider influence of chaos on the dynamics
the quantum model of a harmonic oscillator interacting w

FIG. 2. Resonance cells in the phase space in the coordinates (X, P) for l
51 and~a! e50.5, the cells are labeled by numbers from 1 to 6;~b! e55; ~c!
e510.
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the monochromatic wave when the condition of the re
nanceV5 lv is satisfied. The quantum Hamiltonian is

Ĥ5
p̂2

2M
1

Mv2

2
x21

e

k
cos~kx2Vt !5Ĥ01V̂~x,t !, ~11!

FIG. 3. The resonance cells in the phase space in the coordinates (I ,u) for
l 51 and~a! e50.5, ~b! e55, ~c! e510.
-

where we use the same notation as in Eq.~1!. Since the
Hamiltonian ~11! is periodic in time, we use the Floque
theorem, and write the solution of the Schro¨dinger equation
in the form

cq~x,t !5exp~2 ieqt/\!uq~x,t !, ~12!

where \ is the Planck constant,eq is the quasienergy
cq(x,t) is the quasienergy~QE! function, anduq(x,t1T)
5uq(x,t), with T52p/V.

It is convenient to expand the QE functions,cq(x,t), in
the complete set of harmonic oscillator eigenstates,

cq~x,t !5exp~2 ieqt/\! (
n50

`

Cn
q~ t !cn~x!, ~13!

where the expansion coefficients,Cn
q(t)5Cn

q(t1T), are the
QE functions in the harmonic oscillator representation.
find the QE states, we used the following numeric
procedure.13–15The QE states are the eigenstates of the e
lution operator,Û(T), for one period,T, of the wave field. In
order to construct the matrix,Unm5^nuÛ(T)um&, of the op-
erator Û(T), we choose the representation of the Ham
tonian Ĥ0 . Applying the evolution operator,Û(T), to the
wave functionc(x,0), we have,

Û~T!c~x,0!5c~x,T!. ~14!

Next, we choose the initial state in the form:Cn(0)5dn,n0
.

In this way we obtain a column in the evolution operat
matrix,

Un0 ,n5Cn
(n0)

~T!, ~15!

where the coefficients,Cn
(n0)(T), can be obtained by numeri

cal solution of the Schro¨dinger equation~the form of the
quantum equations of motion see in Ref. 16!. The values of
matrix elements,Un,m , depend on three dimensionless p
rameters: the dimensionless wave amplitude,e5e/(k\v),
the quantum parameter,h5k2\/Mv, which can be treated
as a dimensionless Planck constant, and the ratioV/v5 l
2d. After diagonalization ofUn,m , we obtain the QE func-
tions, Cn

q[Cn
q(mT), m50,12, . . . , and thequasienergies,

eq . The QE states can be used to find the state of the qu
tum system after an arbitrary integer number of periods,mT.
We have

Cn~mT!5(
n8

Cn8~0!(
q

Cn8
q* Cn

q exp~2 ieqmT/\!, ~16!

where the coefficients,Cn8(0), are theamplitudes of the
probability distribution at the initial moment,t50.

In the resonance approximation, the QE functio
Cn

q(t), are independent of time and satisfy the system
algebraic equations,16

~Eq2dn!Cn
q5

e

h
~Vn,n1 lCn1 l

q 1Vn,n2 lCn2 l
q !, ~17!

whereEq5eq /\v is the dimensionless quasienergy. In th
section, we study the case of exact resonance, whend50.
The off-resonant case will be considered in the next sect

The matrix elements in Eq.~17! have the form,16
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Vn,n12m115
~21!mhme2 h/4

2m11A~n11! • • • ~n12m11!
Ln

2m11S h

2D ,

~18a!

Vn,n12m5
~21!mhme2 h/4

2m11A~n11! • • • ~n12m!
Ln

2mS h

2D , ~18b!

whereLn
m are the Laguerre polynomials. Forn@1, the matrix

element can be expressed in terms of the Bessel functi
Jm ,17

Vn,n12m115
1

2

~21!mnm11/2e2 h/4

A~n11! • • • ~n12m11!
J2m11~A2nh!,

~19a!

Vn,n12m5
1

2

~21!mnme2 h/4

A~n11! • • • ~n12m!
J2m~A2nh!. ~19b!

One can see that matrix elements,Vn,n1 l , in Eq. ~17! oscil-
late as a function ofn. In particular, forl 51, they can be
expressed in terms of the Bessel function,J1(A2nh),

Vn,n115
1

2
A n

n11
expS 2

h

4D J1~A2nh!. ~20!

Here the argument of the Bessel function in the quant
model is the quantized dimensionless radius,krn5A2nh.
When the transition probability,Vn,n11 , in Eq. ~17! is small,
the boundaries of quantum resonance cells are defined b
zeros of the Bessel function,J1(A2nh). In Fig. 4, the matrix
elements,Vn,n11 , are plotted as a function ofn, and the
boundaries of the resonant cells are marked by arrows. In
quasiclassical limit, whenn→`, h→0, I /I 05hn (I 0

5Mv/ lk2), the boundaries of the quantum cells, defined
the zeros of the Bessel function,J1(A2nh), in Eq. ~20! co-

FIG. 4. The matrix elements, 2Vn,n11 , vs. n. The resonance cells are la
beled by numbers from 1 to 5. The arrows indicate the boundaries,bi ,i 11 ,
betweenith and i 11th cells (b1,2573, b2,35247, b3,45518, b4,55888,
b5,651357); l 51, h50.1.
s,

the

he

y

incide with the boundaries of the classical cells, defined
zeros of the Bessel function in Eq.~10!.

Due to oscillations of the matrix elements withn, the
three-diagonal system~17! breaks up into relatively indepen
dent blocks. As a consequence, the most part of the QE fu
tions are localized inside one of the quantum cells. To sh
this, let us characterize each QE function by its averagenq

5(nnuCn
qu2 and its dispersion,sq5@(n(n2nq)2uCn

qu2#1/2.
The plot,nq5nq(sq), is shown in Figs. 5~a!–5~c! for three
values ofe. Each QE function on the diagram is represen
by a single point. One can see that the QE functions
localized inside the cells@boundaries of the cells in Figs
5~a!–5~c! are marked by arrows#, because the averages
these QE functions are located inside the cells, and t
dispersions are less than the distance to the boundary o
cell. Each group of states localized in one cell forms a row
these plots. Besides the localized QE functions, there e
delocalized QE states which are represented by scatt
points with large dispersion,sq . These QE states provid
the diffusion of the particle between the resonant cells. Fr
comparison of Fig. 5~b! with Fig. 5~a!, one can see that a
increase ofe from 1 to 2 results in decrease in the number
the delocalized states. The effect of localization of the qu
tum delocalized states under influence of chaos was stu
in Ref. 15. When we further increasee, from e52 to e53
@see Fig. 5~c!#, the number of the delocalized states increa
again. One can see from Fig. 5~b! that the localized QE state
split into two groups: the QE states in one group inter
with the QE states of the next cells and shift up; the Q
states in the other group shift down due to interaction w
the QE states of the preceding cell. As shown in Fig. 5~b!,
the QE states of the first two cells, ate52, strongly interact;
and ate53 the boundary between the first and second c
disappears. This corresponds to chaotization of the first
cells in classical phase space.

A dynamical manifestation of the division of the Hilbe
space into quantum resonance cells is the effect of local
tion of the quantum states within the cells. In other words
the initial state is chosen in some resonance cell, the
remains localized inside this initial cell. In the left side
Figs. 6~a!–6~c! the probability distribution at the timet
51000T, is shown, for three values ofe. The right side
shows the classical phase space for the same parameters
arrows indicate the boundaries of the cells. The initial dis
bution, indicated in Fig. 6~a! by the dashed line, was
Cn(0)5exp(2n/dn), with dn520. This particular form of
the initial distribution can be associated with a finite te
perature of the system.

Let us present the initial probability distribution a
Pn(0)5uCn(0)u25exp(2\vn/t), wheret is the temperature
measured in energy units. In dimensionless units, this
pression can be rewritten as:Pn(0)5exp(2hn/Q), where the
dimensionless temperature,Q5t/(Mv2/k2), is measured in
the same units as the wave amplitude,e. The valuedn
5Q/h520 ath50.1, which was chosen in our simulation
corresponds to the dimensionless temperature,Q52. For
ionized calcium withM56.64310223 g, v52p3500 kHz,
andk51.583105 cm21, the valueQ52 corresponds to the
temperature of 531024 K.
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As one can see from the left side of Fig. 6~a!, almost all
of the initial distribution function is located in the first cel
and remains localized within the initial cell in subseque
times, when the value ofe is small enough~e51!. With

FIG. 5. The averages,nq , of QE functions vs. their dispersions,sq , for
three values of the wave amplitude,~a! e51, ~b! e52, ~c! e53; l 51,
h50.1.
t

increasinge ~e52! in Fig. 6~b!, the second classical ce
@right side in Fig. 6~b!# becomes chaotic and as a cons
quence the boundary between the first and the second ce
the left side in Fig. 6~b! disappears, and the probability
uCn(t)u2, becomes almost independent of whethern is lo-
cated in the first or in second cell. A further increase ofe @in
left side in Fig. 6~c!# up to the valuee53, leads to an in-
crease of the probability in the cells with large values ofn by
a few orders-of-magnitude.

For experimental investigation of quantum chaos
propose to use the property of localization in quantum ce
initially explored in Ref. 9. As one can see on the left side
Figs. 6~a!–6~c!, the average probability distribution as
function of n remains approximately the same inside t
cells, and changes only at the boundaries of the cells. Le
define the cell’s probability,Pi , as the probability of finding
the particle in theith cell. We have:Pi5(ni

ni 11uCn(t)u2,
where ni and ni 11 are the boundaries ofi th and i 11th
cells in the Hilbert space. In Figs. 7~a!–7~c! the probabilities
Pi are shown as a function of time,m5t/T, for the same
values ofe as in Figs. 5~a!–5~c!, 6~a!–6~c!. One can see tha
after a transition period, a cell’s average probability rema
independent of time.

When the first two classical cells on the right side in F
6~c! become chaotic, the quantum probability redistribu
approximately uniformly between the corresponding qu
tum cells shown on the left side in Fig. 6~c!. In Fig. 7~c!, P2

is larger thanP1 , because the number of levels in the seco
cell is larger than the number of levels in the first cell. T
average relative probabilities areP1 /n1'4.131023 and
P2 /n2'3.331023.

Since the average cell probabilities do not change w
time, it is reasonable to average them. Time-averaged p
abilities Pī as a function of the wave amplitude,e, are pre-
sented in Fig. 8. It is possible to use the dependence sh
in Fig. 8 for comparison with experimental results, name
to measure the probability of finding a particle not on a giv
level, n, but in a given cell,i.

The numerical approach based on using the QE state
computing the dynamics by Eq.~16! is very convenient, be-
cause it allows one to determine the state of the system
simple summation. This procedure makes it possible to
erage the quantum quantities over large time intervals.
compared the average energy and the dispersion of en
for the chaotic classical system and for the correspond
quantum system. The quantum average energy and the
persion of energy can be measured experimentally. The
sults are presented in Figs. 9 and 10. One can see from F
9 and 10 that the average energy and dispersion in the q
tum and classical models are approximately the same.
quantum data are presented for two values of the dimens
less Planck constant,h50.1 andh51. One can see that th
value ofh does not affect significantly the chaotic dynamic
except when the value ofe is small enough,e,2. In this
region, an increase inh results in an increase in the numb
of the delocalized states@represented by scattered points wi
large dispersions in Fig. 5~a!#. As a consequence, the diff
sion rate in Figs. 9 and 10 increases withh increasing. The
average in the quantum model at large values ofe ~e.8 in
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FIG. 6. Left side: the probability dis-
tribution at the time,t51000T, for h
50.1, l 51 and~a! e51, ~b! e52, ~c!
e53. The initial distribution is illus-
trated by the dashed line. Right side
the classical phase space for the sam
parameters.
h
is
ce
it dy-

on
Fig. 9! is less than the average in the classical model. T
difference does not represent any physical effect, and
consequence of the artificial truncation of the Hilbert spa
the quantum Hilbert space used in the calculations is fin
while the classical phase space is infinite.
is
a
:

e,

IV. QUANTUM DYNAMICS IN THE NEAR-RESONANCE
CASE

In the preceding section we considered the chaotic
namics for the case of exact resonance. A more comm
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situation occurs when the frequencies of the wave and
oscillator do not satisfy exactly the resonance condition,
when d5 l 2V/vÞ0. In this case, in the classical pha
space there exists a finite number of the resonance c

FIG. 7. Time-evolution of the probability of finding a particle in theith cell.
The cells are labeled by the numbers from 1 to 4;h50.1, l 51; ~a! e51,
solid lines: i 51, 2, dashed line:i 53; ~b! e52, ~c! e53, circles: i 51,
squares:i 52, crosses:i 53, no symbols:i 54.
e
.,

lls,

because Eq.~9! is satisfied for a finite number of the stab
points,kr(I e). WhendÞ0, the infinite separatrix in the clas
sical phase space is destroyed. As a consequence, in
quantum system one may anticipate that the separatrix
states are destroyed, too. Since the separatrix QE states
vide tunneling between the cells, their destruction should
sult in localization of the quantum states. In Fig. 11~a! we
plot, nq(sq) for the near-resonance case, whend50.01, and
for small e. In Fig. 11~b! the probability distribution at time
t5104T is shown and in Fig. 11~c! the phase space for th
same parameters as in Figs. 11~a! and 11~b! is illustrated.
One can see from Fig. 11~a! that whendÞ0, there are no
delocalized QE functions with large dispersion, as, for e
ample, in Fig. 5~a!. This is different from the case of th
exact resonance, when the separatrix QE states exist at
trarily small e.15 As a consequence, there is no tunneli
between the cells and a quantum state, localized in so
region of the Hilbert space, remains localized in the init
region for any time, as shown in Fig. 11~b!. Quantum local-
ization is the quantum manifestation of localization of cla
sical trajectories in the phase space. At smalle, there is only
one resonance cell in the classical phase space, as show
Fig. 11~c!, the stochastic web is absent, the particle is loc
ized, and cannot travel along the web.

One can see from Fig. 11~a! that QE states in centra
regions corresponding to resonant cells are more delocal
than those near the separatrices. In order to treat this p
erty, let us compare the plot ofnq(sq) with the correspond-
ing classical phase space. Each value ofn in the quantum

FIG. 8. Time-averaged probability distribution to find a particle in the in
vidual cells, the cells are labeled by numbers, from 1 to 5. The avera
was performed in the time interval:t52000– 12 000T, over 50 points,h
50.1, l 51.
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system corresponds to a quantized classical action,I n /I 0

5nh, whereI 05Mv/ lk2, or to the quantized dimensionles
radius,krn5A2nh. Each value of actionI n ~or krn) corre-
sponds to the set of classical trajectories. Moving along
trajectory the particle can approach the values ofI n in the
interval I n1

,I n,I n2
. The corresponding QE state will b

delocalized over the states with the numbersn in the interval
n1,n,n2 . The more curved the trajectory in the pha
space is, the more spread is the QE state correspondin
this trajectory in the quantum case. In the classical ph
space in Fig. 11~c! the least curved trajectories correspond
the actions~radii! satisfying the condition~10!. As the con-
sequence, the quantum states near the pointhnh5I h /I 0 ~here
subscript means ‘‘hyperbolic,’’ andh in the denominator
means the dimensionless Planck constant,h5k2\/Mv)
have the smallest dispersions.

Modification of the QE states, and modification of th
classical and quantum dynamics at increasing the wave
plitude,e, in the near resonance case is shown, respectiv
in Figs. 12~a!–12~c! and 13~a!–13~c!. As one can see from
Figs. 12~a!–12~c!, the QE states quickly become delocaliz
as e increases. The delocalization of the QE functions
caused by two processes. The first is the formation of qu

FIG. 9. Time-averaged value of the energy,Ēquant5h(n̄quant11/2), where

n̄quant5( i 51
Nquantn̄i /Nquant, ni5(nnuCn(t i)u2 for the quantum model; and fo

the classical model:Ēcl5r2/2, wherer25( i 51
Ncl r2(t i)/Ncl . In the quantum

model, averaging was performed in the time interval:t52000T to 12 000T
over Nquant550 points. In the classical model, averaging was perform
over 15 chaotic trajectories in the time interval:t550T to 15 050T (Ncl

515 000); the solid line and circles indicate classical results; the dashed
and squares indicate quantum results forh50.1; the dotted line and crosse
indicate quantum results forh51; l 51. The error bars for the quantum
results are of the size of the symbols.
e

to
se

m-
ly,

s
n-

tum resonance cells@see Ref. 9, Eq.~8!# ase increases. This
corresponds to formation of classical resonance cells
phase space, defined by the condition~9!. The second pro-
cess, which leads to delocalization of the quantum state
chaotization of the classical dynamics. These two pheno
ena can be observed on the right side in Fig. 13~a!. The
dynamics ate51 in the region near the first cell is mostl
chaotic, while the sixth cell~at u5p/2) is not yet formed.

Similar features can be observed in the quantum dyn
ics. One can see from Fig. 11~b! that whene is small, the
perturbation mostly affects the first two cells, while the pro
ability distribution in the third, fourth, and fifth cells almos
coincides with the probability distribution for the initial stat
The same features can be observed in the classical p
space in Fig. 11~c!. Further increase ofe, up toe51, affects
the quantum and classical dynamics in all cells, as show
Fig. 13~a!. The number of the resonant cells in the classi
phase space increases@see Eq.~9!#, and the Hilbert space on
the left side in Fig. 13~a! begins to divide into cells, too. On
can see the formation of characteristic plateaus in the p
ability distribution. Whene52 the plateaus in the probabilit
distribution on the left side in Fig. 13~b! become more dis-
cernible. In the classical phase space, for the correspon

d

ne

FIG. 10. Time-averaged value of the dispersion of the energy,DEquant

5hs̄quant, where s̄quant5( i 51
Nquants i /Nquant, s i5A(n(n2n̄i)

2uCn(t i)u2 for
the quantum model; and for the classical model:DEcl5$( i 51

Ncl @r(t i)
2/2

2r2/2#2/Ncl%
1/2. In the quantum model, averaging was performed in t

time interval t52000– 12000T over Nquant550 points. In the classica
model, averaging was performed over 15 chaotic trajectories in the
interval t550– 15 050T, (Ncl515 000); the solid line and circles indicat
classical results; the dashed line and squares indicate quantum resul
h50.1; the dotted line and crosses indicate quantum results forh51; l
51. The error bars for quantum results are of the size of the symbols.
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FIG. 11. ~a! Averages,nq , of QE functions versus their dispersions,sq , ~b!
the quantum probability distribution at timet5104T, and ~c! the classical
phase space;l 51, e50.05,h50.5, d50.01. The boundaries of the cells~for
the corresponding resonance case! are marked by arrows.
FIG. 12. Averages,nq , of the QE functions vs. their dispersion,sq , for
three values of the wave amplitude,e, ~a! e51, ~b! e52, ~c! e53, in the near
resonance case, whend50.01; l 51, h50.5. The boundaries of the corre
sponding resonance cells are marked by arrows.
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FIG. 13. Left side: the probability distribution at the time,t5104T, for h50.5, l 51, d50.01 and~a! e51, ~b! e52, ~c! e53. The initial distribution is
indicated by the dashed line. Right side: the classical phase space for the same parameters.
C

in
parameters, the area of resonance cells also increases.
parison of Figs. 5~a!–5~c! with Figs. 12~a!–12~c!, and Figs.
6~a!–6~c! with Figs. 11~b!, 11~c!, 13~a!–13~c! allows us to
conclude that the influence of detuning,d, on the dynamics
om-becomes less significant when the ratioe/d increases, which
can be seen from the structure of Eqs.~8! and~17! ~see also
Ref. 9!. Thus, the structure of the probability distribution
the left side of Fig. 13~a! differs qualitatively from those in



h

to
se
he
a
er
tu
an
as
ty
a-
as
o
s-

tu
m
sic

s

ti
he
th
oc

lts
ge
th
th
a

d

to
it
a

ne

m

te
’’
a

th

al
this
dis-
-
ys-

es
lls,
ells.
he
y-
the
tem
ee,

gy
Se-
s-

.
oc.

C.

H.
nd-
Z.

H.

ys.

v,
,

v.

v.

s

-
k,

382 Chaos, Vol. 10, No. 2, 2000 Berman, James, and Kamenev
Fig. 6~a!, while the left sides of Figs. 13~c! and 6~c! are
similar. The same can be said about classical dynamics w
we compare Fig. 13~a! with Fig. 6~a! and Fig. 13~c! with Fig.
6~c!.

V. CONCLUSION

In conclusion, we have investigated the transition
quantum chaos of a trapped ion interacting with two la
fields with slightly different frequencies. We compared t
classical and quantum dynamics in this system. Our
proach to the quantum problem is based on the quasien
states. It was shown that the Hilbert space of the quan
system is reasonable to separate into quantum reson
cells—similar to the resonance cells in the classical ph
space—and to measure the average quantum probabili
each cell. This technique will allow one to simplify the me
surement of the probability distribution, because in this c
it is not necessary to measure the probability at a fixed
cillator state,n. It is enough to measure the probability di
tribution in the intervalni,n,ni 11 , whereni andni 11 are
the boundaries between theith and thei 11th quantum reso-
nance cells. The locations of the boundaries of the quan
resonance cells in Hilbert space, in the quasiclassical li
correspond to the locations of the separatrices in the clas
phase space.16

The average energy,Ē, and the dispersion of energy,s̄,
are calculated in both the quantum and the classical case
is shown thatĒ and the dispersion,s̄, in the quantum and
classical systems are approximately the same. It is interes
to compare this result with the results obtained for ot
dynamical systems. The system studied in this article in
exact resonance case possesses the inhomogeneous st
tic web. The web width decreases whenr ~or I ) increases, so
that the classical diffusion is practically limited. The resu
for quantum chaotic dynamics in the system with inhomo
neous stochastic web obtained in this article differ from
results obtained for the quantum chaotic dynamics in
systems where the classical diffusion is unlimited, such
kicked rotor10 or kicked oscillator.11 It was shown that the
dynamics in the two latter systems repeat the classical
namics only during a finite time,t,t0 after which the quan-
tum interference effects limit the quantum diffusion. Due
the results of this article, the dynamics in the system w
limited classical diffusion in the regime of strong classic
chaos is independent of the quantum parameterh, and the
chaotic dynamics in the quantum and classical systems
average coincides for any time,t. This feature differentiates
the studied system from the kicked systems mentio
above.

The influence of finite detuning,dÞ0, is analyzed for
both quantum and classical cases. It is shown that for a s
amplitude,e, the condition,dÞ0, considerably affects the
dynamics: the resonance cells disappear~for the classical
case, see also Ref. 18!, and the quantum and classical sta
are localized.~In the classical case, the term ‘‘localization
means here thatI;const. In the quantum case, it means th
the probability distribution exponentially decreases with
distance from the initial state.! For e@d, there are cells~for
en
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smallkr), where the dynamics, in the casedÞ0, is similar to
that for exact resonance, whend50. The character of the
localization of quantum states, whene increases anddÞ0,
also changes. Whene is small, we observe the exponenti
localization characteristic for nondegenerate system. In
case, the probability exponentially decreases with the
tance from the initial state. Fore>1, we observe the local
ization over the cells, characteristic for the degenerate s
tem, when the probability distribution decreas
exponentially only at the boundaries of the quantum ce
being on average the same in the central regions of the c
The transition from one type of localization to another is t
quantum manifestation of transition from the classical d
namics characteristic for the nondegenerate system to
classical dynamics characteristic for the degenerate sys
~for discussion of the transition in the classical system s
for example, Refs. 12, 19!.
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